Schwarzian derivative as a proof of the chaotic behaviour
نویسندگان
چکیده
In recent years, a sufficient condition for determining chaotic behaviours of the nonlinear systems has been characterized by the negative Schwarzian derivative (Hacıbekiroǧlu et al, Nonlinear Anal.: Real World Appl. 10, 1270 (2009)). In this work, the Schwarzian derivative has been calculated for investigating the quantum chaotic transition points in the high-temperature superconducting frame of reference, which is known as a nonlinear dynamical system that displays some macroscopic quantum effects. In our previous works, two quantum chaotic transition points of the critical transition temperature, Tc, and paramagnetic Meissner transition temperature, TPME, have been phenomenologically predicted for the mercury-based high-temperature superconductors (Onbaşlı et al, Chaos, Solitons and Fractals 42, 1980 (2009); Aslan et al, J. Phys.: Conf. Ser. 153, 012002 (2009); Çataltepe, Superconductor (Sciyo Company, India, 2010)). The Tc, at which the one-dimensional global gauge symmetry is spontaneously broken, refers to the second-order phase transition, whereas the TPME, at which time reversal symmetry is broken, indicates the change in the direction of orbital current in the system (Onbaşlı et al, Chaos, Solitons and Fractals 42, 1980 (2009)). In this context, the chaotic behaviour of the mercury-based high-temperature superconductors has been investigated by means of the Schwarzian derivative of the magnetic moment versus temperature. In all calculations, the Schwarzian derivatives have been found to be negative at both Tc and TPME which are in agreement with the chaotic behaviour of the system.
منابع مشابه
The Norm Estimates of Pre-Schwarzian Derivatives of Spirallike Functions and Uniformly Convex $alpha$-spirallike Functions
For a constant $alphain left(-frac{pi}{2},frac{pi}{2}right)$, we definea subclass of the spirallike functions, $SP_{p}(alpha)$, the setof all functions $fin mathcal{A}$[releft{e^{-ialpha}frac{zf'(z)}{f(z)}right}geqleft|frac{zf'(z)}{f(z)}-1right|.]In the present paper, we shall give the estimate of the norm of the pre-Schwarzian derivative $mathrm{T}...
متن کاملThe Schwarzian Derivative for Harmonic Mappings
The Schwarzian derivative of an analytic function is a basic tool in complex analysis. It appeared as early as 1873, when H. A. Schwarz sought to generalize the Schwarz-Christoffel formula to conformal mappings of polygons bounded by circular arcs. More recently, Nehari [5, 6, 7] and others have developed important criteria for global univalence in terms of the Schwarzian derivative, exploiting...
متن کاملThe norm of pre-Schwarzian derivatives on bi-univalent functions of order $alpha$
In the present investigation, we give the best estimates for the norm of the pre-Schwarzian derivative $ T_{f}(z)=dfrac{f^{''}(z)}{f^{'}(z)} $ for bi-starlike functions and a new subclass of bi-univalent functions of order $ alpha $, where $Vert T_{f} Vert= sup_{|z|
متن کاملThe Cocycle of the Quantum HJ Equation and the Stress Tensor of CFT
We consider two theorems formulated in the derivation of the Quantum Hamilton–Jacobi Equation from the EP. The first one concerns the proof that the cocycle condition uniquely defines the Schwarzian derivative. This is equivalent to show that the infinitesimal variation of the stress tensor “exponentiates” to the Schwarzian derivative. The cocycle condition naturally defines the higher dimensio...
متن کاملNon-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011